

Rampant TechPress

Using the Oracle oradebug
Utility
Debugging Oracle applications

Mike Ault

MONOGRAPH

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE III

Notice
While the author & Rampant TechPress makes every effort to ensure the
information presented in this white paper is accurate and without error, Rampant
TechPress, its authors and its affiliates takes no responsibility for the use of the
information, tips, techniques or technologies contained in this white paper. The
user of this white paper is solely responsible for the consequences of the
utilization of the information, tips, techniques or technologies reported herein.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE IV

Using the Oracle oradebug Utility
Debugging Oracle applications

By Mike Ault

Copyright © 2003 by Rampant TechPress. All rights reserved.

Published by Rampant TechPress, Kittrell, North Carolina, USA

Series Editor: Don Burleson

Production Editor: Teri Wade

Cover Design: Bryan Hoff

Oracle, Oracle7, Oracle8, Oracle8i, and Oracle9i are trademarks of Oracle Corporation.
Oracle In-Focus is a registered Trademark of Rampant TechPress.

Many of the designations used by computer vendors to distinguish their products are
claimed as Trademarks. All names known to Rampant TechPress to be trademark names
appear in this text as initial caps.

The information provided by the authors of this work is believed to be accurate and
reliable, but because of the possibility of human error by our authors and staff, Rampant
TechPress cannot guarantee the accuracy or completeness of any information included in
this work and is not responsible for any errors, omissions, or inaccurate results obtained
from the use of information or scripts in this work.

Visit www.rampant.cc for information on other Oracle In-Focus books.

ISBN: 0-9740716-7-6

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE V

Table Of Contents
Notice.. iii
Using the Oracle oradebug Utility – Publication Information .. iv

Table Of Contents ... v

Introduction ... 1

Invoking Oradebug ... 1

Using Debug.. 3
Monitoring the Current Session With the oradebug setmypid 4
Using DUMP ... 5
Commands not requiring SPID to be set ... 7
Using Oradebug for System Hangs: .. 10
Getting a PROCESSTATE DUMP ... 11
Getting a ERRORSTACKS DUMP .. 12
Using ORADEBUG to Trace A Sessions SQL 12
How to Find the Right PID for oradebug setospid 16
Tracing Errors Using ORADEBUG .. 17
Using ORADEBUG to Find Semaphore and Memory Segments 19
Finding Parallel SQL Processes Using ORADEBUG....................... 21
Tracking down ORA-04030 errors.. 22
Using Oradebug to Debug Spinning Processes 22
Oracle 8 IDLM and ORADEBUG .. 23
How to determine the Events Set in a System................................... 24
Using ORADEBUG to Release DDL locks 24
How to Trace Trigger Actions Using Oradebug................................ 26
Checking on Temporary Segment Usage with Oradebug 26
Suspending a process using Oradebug .. 27

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE VI

Resuming A Process using Oradebug.. 27
Looking at a Processes Statistics using Oradebug............................. 28
Looking at a Process Error Stack... 29
Using Oradebug to Dump the SGA... 29
Using Oradebug to Look at Latches .. 30
Using ORADEBUG to Look at Library Cache States....................... 30
Getting Parallel Server DML Locks Using Oradebug....................... 31
Dumping the Control File Contents Using ORADEBUG................. 31

Summary.. 33

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE VII

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 1

Introduction
Beginning in Oracle7 with ORADBX, the ORADEBUG utility allows
DBAs to start and stop tracing for any session, dump SGA and other
memory structures, wakeup oracle processes such as SMON or PMON,
suspend and resume processing in a SID, debug enqueue services, debug
the CGS name service, dump core files and IPC information, in fact many
useful operations that aren't usually available. Unfortunately this utility,
other than a terse paragraph in the administrator's manuals, is virtually
undocumented. In this paper I have attempted to provide as much
reference material as can be found or developed about ORADEBUG from
various lists, Metalink and the Pipelines at Quest RevealNet labs.

Invoking Oradebug
Oradebug is invoked from SVRMGRL in pre-9i instances and from
SQLPLUS in 9i and greater versions. The main commands of oradebug
can be displayed by entering oradebug help from the svrmgrl or
SQLPLUS command line as is shown in Figure 1.

SQL> oradebug help
HELP [command] Describe one or all commands
SETMYPID Debug current process
SETOSPID <ospid> Set OS pid of process to debug
SETORAPID <orapid> ['force'] Set Oracle pid of process to
debug
DUMP <dump_name> <level> Invoke named dump
DUMPSGA [bytes] Dump fixed SGA
DUMPLIST Print a list of available dumps
EVENT <text> Set trace event in process
SESSION_EVENT <text> Set trace event in session
DUMPVAR <p|s|uga> <name> [level] Print/dump a fixed PGA/SGA/UGA
variable
SETVAR <p|s|uga> <name> <value> Modify a fixed PGA/SGA/UGA
variable
PEEK <addr> <len> [level] Print/Dump memory
POKE <addr> <len> <value> Modify memory
WAKEUP <orapid> Wake up Oracle process
SUSPEND Suspend execution
RESUME Resume execution

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 2

FLUSH Flush pending writes to trace
file
CLOSE_TRACE Close trace file
TRACEFILE_NAME Get name of trace file
LKDEBUG Invoke global enqueue service
debugger
NSDBX Invoke CGS name-service debugger
-G <Inst-List | def | all> lkdebug cluster database command
prefix
-R <Inst-List | def | all> lkdebug cluster database command
prefix
SETINST <instance# .. | all> Set instance list in double
quotes
SGATOFILE <SGA dump dir> Dump SGA to file; dirname in double
quotes
DMPCOWSGA <SGA dump dir> Dump & map SGA as COW; dirname in double
quotes
MAPCOWSGA <SGA dump dir> Map SGA as COW; dirname in double
quotes
HANGANALYZE [level] Analyze system hang
FFBEGIN Flash Freeze the Instance
FFDEREGISTER FF deregister instance from
cluster
FFTERMINST Call exit and terminate instance
FFRESUMEINST Resume the flash frozen instance
FFSTATUS Flash freeze status of instance
CORE Dump core without crashing
process
IPC Dump ipc information
UNLIMIT Unlimit the size of the trace
file
PROCSTAT Dump process statistics
CALL <func> [arg1] ... [argn] Invoke function with arguments

Figure 1: Results of oradebug help for Oracle9i

Once a command is entered into the oradebug utility, almost all of the
results are generated into trace files in the udump destination location. The
udump location can be identified by reviewing the initialization parameter
file for the user_dump_dest parameter value, reviewing initialization
parameter settings using Oracle Enterprise Manager (OEM), or, by issuing
the SHOW PARAMETER USER_DUMP_DEST command in SQLPLUS.
In Oradebug the TRACEFILE_NAME command will display the current
processes dumpfile name. The trace files generated from the oradebug
utility will be named for the spid of the process from where the oradebug
is executed.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 3

Using Debug
In order to use oradebug, for most commands, you must first tell oradebug
what SPID you wish to execute the debug commands against. You see, the
oradebug utility can be run from a privileged user against any other
process providing you know the spid of the other process. The SPIDs of
the various processes can be found with a simple select, as shown in
Figure 2.

 SQL> SELECT a.username, a.sid, a.serial#, b.spid
 2 FROM v$session a, v$process b
 3 WHERE a.paddr=b.addr;

USERNAME SID SERIAL# SPID
------------------------------ ---------- ---------- ----
 1 1 1588
 2 1 1540
 3 1 1524
 4 1 1528
 5 1 1592
 6 1 1556
 7 1 212
SYS 8 70 1964
DBAUTIL 11 20 620

Figure 2: Select to get users and SPIDS

Of course, if you know the username you are looking for, you can modify
the select command shown in Figure 2 to reflect this username restriction.
If you are in a system where all users use the same username, you can also
restrict the command by terminal being used, operating system userid or
program being executed as all of this is also stored in the V$SESSION
view.

Once you have the SPID you set the value using the command shown in
figure 3.

$ sqlplus /nolog
SQL> connect sys as sysdba
Password: xxxxx

Connected.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 4

SQL> oradebug setospid <SPID>
SQL> oradebug unlimit

Figure 3: Setting SID for oradebug session

Note in Figure 3 the use of the unlimit command, this removes any
restriction on trace file size imposed by the initialization parameter
settings for the instance for this session.

Monitoring the Current Session With the
oradebug setmypid

Once the SPID is set, any SID specific oradebug operation can be
performed. The SID restricted operations are listed in Figure 4.

DUMP <dump_name> <level> Invoke named dump
DUMPLIST Print a list of available dumps
EVENT <text> Set trace event in process
SESSION_EVENT <text> Set trace event in session
DUMPVAR <p|s|uga> <name> [level] Print/dump a fixed PGA/SGA/UGA
variable
SETVAR <p|s|uga> <name> <value> Modify a fixed PGA/SGA/UGA
variable
PEEK <addr> <len> [level] Print/Dump memory
POKE <addr> <len> <value> Modify memory
SUSPEND Suspend execution
RESUME Resume execution
FLUSH Flush pending writes to trace
file
CLOSE_TRACE Close trace file
TRACEFILE_NAME Get name of trace file
LKDEBUG Invoke global enqueue service
debugger
NSDBX Invoke CGS name-service debugger
-G <Inst-List | def | all> lkdebug cluster database command
prefix
-R <Inst-List | def | all> lkdebug cluster database command
prefix
HANGANALYZE [level] Analyze system hang
CORE Dump core without crashing
process
PROCSTAT Dump process statistics
CALL <func> [arg1] ... [argn] Invoke function with arguments

Figure 4: SID restricted operations

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 5

Using DUMP
The DUMP command allows various structures of a process to be dumped
to trace file for examination. The types of dump available for a process are
listed in Figure 5. These can be listed at anytime by using the oradebug
dumplist command.

 EVENTS
 TRACE_BUFFER_ON
 TRACE_BUFFER_OFF
 HANGANALYZE
 LATCHES
 PROCESSSTATE
 SYSTEMSTATE
 INSTANTIATIONSTATE
 REFRESH_OS_STATS
 CROSSIC *
 CONTEXTAREA
 HEAPDUMP
 HEAPDUMP_ADDR
 POKE_ADDRESS *
 POKE_LENGTH *
 POKE_VALUE *
 POKE_VALUE0 *
 GLOBAL_AREA
 MEMORY_LOG
 REALFREEDUMP
 ERRORSTACK
 HANGANALYZE_PROC
 TEST_STACK_DUMP
 BG_MESSAGES
 ENQUEUES
 SIMULATE_EOV
 KSFQP_LIMIT
 KSKDUMPTRACE
 DBSCHEDULER
 GRANULELIST

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 6

 GRANULELISTCHK
 SCOREBOARD
 GES_STATE
 ADJUST_SCN
 NEXT_SCN_WRAP
 CONTROLF
 FULL_DUMPS
 BUFFERS
 RECOVERY *
 SET_TSN_P1 *
 BUFFER
 PIN_BLOCKS *
 BC_SANITY_CHECK
 FLUSH_CACHE *
 LOGHIST *
 ARCHIVE_ERROR
 REDOHDR
 LOGERROR
 OPEN_FILES *
 DATA_ERR_ON *
 DATA_ERR_OFF *
 TR_SET_BLOCK *
 TR_SET_ALL_BLOCKS *
 TR_SET_SIDE *
 TR_CRASH_AFTER_WRITE *
 TR_READ_ONE_SIDE *
 TR_CORRUPT_ONE_SIDE *
 TR_RESET_NORMAL *
 TEST_DB_ROBUSTNESS
 LOCKS
 GC_ELEMENTS
 FILE_HDRS
 KRB_CORRUPT_INTERVAL
 KRB_CORRUPT_SIZE
 KRB_PIECE_FAIL
 KRB_OPTIONS
 KRB_SIMULATE_NODE_AFFINITY

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 7

 KRB_TRACE
 KRB_BSET_DAYS
 DROP_SEGMENTS *
 TREEDUMP <OBJ_ID>
 LONGF_CREATE
 ROW_CACHE
 LIBRARY_CACHE
 SHARED_SERVER_STATE
 KXFPCLEARSTATS
 KXFPDUMPTRACE
 KXFPBLATCHTEST
 KXFXSLAVESTATE
 KXFXCURSORSTATE <cursor_id>
 WORKAREATAB_DUMP
 OBJECT_CACHE *
 SAVEPOINTS *

(* Indicates special arguments required)
 All dump options take the standard LEVEL arguments 2, 4, 6, 8, 10, 12
except as noted.

Figure 5: DUMP Options

Commands not requiring SPID to be set
There are several commands that do not require a SPID to be set. These
refer to system wide type dumps. An example is the IPC command, the
results from the IPC command are shown in Figure 6.

Result of oradebug IPC on w2k 9.1.0.1.1 goes to trace file:

Dump file C:\oracle\admin\aultdb1\udump\ORA01960.TRC
Thu Mar 21 10:14:36 2002
ORACLE V9.0.1.1.1 - Production vsnsta=0
vsnsql=10 vsnxtr=3
Windows 2000 Version 5.0 Service Pack 1, CPU type 586
Oracle9i Enterprise Edition Release 9.0.1.1.1 - Production
With the Partitioning option
JServer Release 9.0.1.1.1 - Production
Windows 2000 Version 5.0 Service Pack 1, CPU type 586
Instance name: aultdb1

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 8

Redo thread mounted by this instance: 1

Oracle process number: 11

Windows thread id: 1960, image: ORACLE.EXE

*** 2002-03-21 10:14:36.000
*** SESSION ID:(8.42) 2002-03-21 10:14:36.000
Dump of Windows skgm context
areaflags 0000007f
realmflags 00000001
maxtotalrealmsize 6f21f000
VMpagesize 00001000
VMallocgranularity 00010000
minappaddress 00010000
maxappaddress 7FFEFFFF
stacklimit 07561000
magic acc01ade
Handle: 02C726B8 `sga_aultdb1'
Dump of Windows realm handle `sga_aultdb1', flags = 00000001
 Area #0 `Fixed Size' containing Subareas 0-0
 Total size 0000000000044f1c Minimum Subarea size 00000000
 Area Subarea Start Addr
 0 0 02C90000
 Subarea size
 00045000
 Area #1 `Variable Size' containing Subareas 2-2
 Total size 0000000009800000 Minimum Subarea size 00800000
 Area Subarea Start Addr
 1 2 64800000
 Subarea size
 09800000
 Area #2 `Redo Buffers' containing Subareas 1-1
 Total size 0000000000013000 Minimum Subarea size 00000000
 Area Subarea Start Addr
 2 1 02CE0000
 Subarea size
 00013000
--------- Process Post/Wait Resource Information ---------
Maximum threads: = 7500
Thread SHAD, tid: 1960, Post/Wait Event: 272 = 0
Thread PMON, tid: 1628, Post/Wait Event: 312 = 0
Thread DBW0, tid: 592, Post/Wait Event: 336 = 0
Thread LGWR, tid: 328, Post/Wait Event: 372 = 0
Thread CKPT, tid: 1648, Post/Wait Event: 392 = 0
Thread SMON, tid: 1688, Post/Wait Event: 412 = 0
Thread RECO, tid: 1696, Post/Wait Event: 432 = 0
Thread CJQ0, tid: 452, Post/Wait Event: 452 = 0
Thread S000, tid: 1268, Post/Wait Event: 472 = 0
Thread D000, tid: 440, Post/Wait Event: 492 = 0

Figure 6: Results of the oradebug IPC command

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 9

Another command that is generic and requires no SID is the dumplist
command. The results of ORADEBUG dumplist command are shown in
Figure 7.

SQL> oradebug dumplist
EVENTS
TRACE_BUFFER_ON
TRACE_BUFFER_OFF
HANGANALYZE
LATCHES
PROCESSSTATE
SYSTEMSTATE
INSTANTIATIONSTATE
REFRESH_OS_STATS
CROSSIC
CONTEXTAREA
HEAPDUMP
HEAPDUMP_ADDR
POKE_ADDRESS
POKE_LENGTH
POKE_VALUE
POKE_VALUE0
GLOBAL_AREA
MEMORY_LOG
REALFREEDUMP
ERRORSTACK
HANGANALYZE_PROC
TEST_STACK_DUMP
BG_MESSAGES
ENQUEUES
SIMULATE_EOV
KSFQP_LIMIT
KSKDUMPTRACE
DBSCHEDULER
GRANULELIST
GRANULELISTCHK
SCOREBOARD
GES_STATE
ADJUST_SCN
NEXT_SCN_WRAP
CONTROLF
FULL_DUMPS
BUFFERS
RECOVERY
SET_TSN_P1
BUFFER
PIN_BLOCKS
BC_SANITY_CHECK
FLUSH_CACHE
LOGHIST
ARCHIVE_ERROR
REDOHDR
LOGERROR
OPEN_FILES

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

DATA_ERR_ON

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 10

DATA_ERR_OFF
TR_SET_BLOCK
TR_SET_ALL_BLOCKS
TR_SET_SIDE
TR_CRASH_AFTER_WRITE
TR_READ_ONE_SIDE
TR_CORRUPT_ONE_SIDE
TR_RESET_NORMAL
TEST_DB_ROBUSTNESS
LOCKS
GC_ELEMENTS
FILE_HDRS
KRB_CORRUPT_INTERVAL
KRB_CORRUPT_SIZE
KRB_PIECE_FAIL
KRB_OPTIONS
KRB_SIMULATE_NODE_AFFINITY
KRB_TRACE
KRB_BSET_DAYS
DROP_SEGMENTS
TREEDUMP
LONGF_CREATE
ROW_CACHE
LIBRARY_CACHE
SHARED_SERVER_STATE
KXFPCLEARSTATS
KXFPDUMPTRACE
KXFPBLATCHTEST
KXFXSLAVESTATE
KXFXCURSORSTATE
WORKAREATAB_DUMP
OBJECT_CACHE
SAVEPOINTS

Figure 7: Results from oradebug dumplist command

Using Oradebug for System Hangs:
One area where oradebug is particularly useful is in the diagnosis of
system hangs. Usually the system will hang for all users except SYS. If
you can log into the SYS user as SYSDBA or as the INTERNAL users in
pre-Oracle9i systems, the system hang can be analyzed as is shown in
Figure 8.

SQL> oradebug setmypid
SQL> oradebug unlimit
SQL> oradebug setinst all
SQL> oradebug hanganalyze 5
SQL> oradebug -g def dump systemstate 10

Figure 8: Commands to generate a trace for a system hang.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 11

Notice in the commands in Figure 8 that we get a systemstate dump as
well as a hang analyze dump. You don't need a hang to get a systemstate
dump, these types of dumps can be obtained anytime using the commands
in Figure 9.

This creates a large trace file in the user_dump_dest (30M or more is not
unusual).

Note: the init<sid>.ora parameter MAX_DUMP_FILE_SIZE controls the
maximum trace file size. Using Oradebug and setting unlimit will allow a
complete dump which we will need.

Do this step for sure if the entire database is frozen or nearly frozen and if
this condition came on suddenly and there are no archive errors in the alert
log.

Please note: As systemstate dumps are instance specific, they tend to be
inconclusive with hanging problems involving Oracle Parallel Server
(OPS) unless you get them from each node. You will need 3 system state
dumps from each node for OPS.

Do the systemstate dump 3 times in a row.

 $ svrmgrl
 connect internal
 oradebug setmypid
 oradebug unlimit
 oradebug dump systemstate 10

Figure 9: Getting systemstate dumps from Oradebug.

Getting a PROCESSTATE DUMP
If you need to trace certain processes, use oradebug to get a
PROCESSSTATE dump.

You should also trace the process from the os level using various os level
tools as specific to your os.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 12

When you get processstate dumps you should get them 3 times. This
generates a trace file in your user_dump_dest (from SVRMGRL or
sqlplus: show parameter user_dump_dest).

This is demonstrated in Figure 10.

$ svrmgrl
 connect internal
 oradebug setospid <process ID>
 oradebug unlimit
 oradebug dump processstate 10

Figure 10: Example processstate dumps

Getting a ERRORSTACKS DUMP
You can also get errorstacks from the process. Again, you should usually
do this 3 times. This generates a trace file in your user_dump_dest (from
svrmgrl or sqplus: show parameter user_dump_dest).

This is demonstrated in Figure 11.

$ svrmgrl
 connect internal
 oradebug setospid <process ID>
 oradebug unlimit
 oradebug dump errorstack 3

Figure 11: Example errorstack dump

Using ORADEBUG to Trace A Sessions SQL
Why would you want to use oradebug to capture trace information rather
than say, DBMS_SYSTEM? If all you are interested in is a level 1 trace to
say, capture SQL generated by Discoverer User Edition in order to run the
same statements from SQL PLUS then DBMS_SYSTEM is fine. Let's
look at this, let me remind you that Discoverer User Edition opens two
sessions on the database and you need system privileges to see the trace,
i.e. log in as SYS.

First you will need to get SID, SERIAL#, PADDR from V$SESSION, for
example:

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 13

SQL> select username, sid, serial#, paddr from v$session where
username='VIDEO31';

USERNAME SID SERIAL# PADDR

VIDEO31 14 13202 820532C8
VIDEO31 15 4665 82053EC8

Once you know the SID and the SERIAL#, you can enable the trace for
each session running the command:

EXECUTE DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION(<SID>, <SERIAL#>, TRUE)

Everything the user does will now be traced at trace level 1 until you
execute the SQL command again, but replacing 'TRUE' with 'FALSE'.

But what if you want a more detailed trace? Say a level 4? Obviously,
since there is no way to set the level using DBMS_SYSTEM, we should
use oradegub instead. Let's look at that example next.

Sometimes the trace at level 1 isn't enough, because in the sql statements
there are some bind variables. You need their values before you run the
query into SQLPLUS. In this case you have to perform trace at level 4, so
that you have the value of each bind variable in the .trc file.

Enabling the level 4 trace for a Discoverer user, first get SID, SERIAL#,
PADDR from V$SESSION. For example:

SQL> select username, sid, serial#, paddr from v$session
where username='VIDEO31';

USERNAME SID SERIAL# PADDR

VIDEO31 14 13202 820532C8
VIDEO31 15 4665 82053EC8

Then you get SPID from the following query:

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 14

SELECT ADDR, PID, SPID FROM V$PROCESS WHERE ADDR = <PADDR from V$SESSION>;

For example:

SQL> SELECT ADDR, PID, SPID FROM V$PROCESS WHERE ADDR = '820532C8';

ADDR PID SPID

820532C8 9 5408

SQL> SELECT ADDR, PID, SPID FROM V$PROCESS WHERE ADDR = '82053EC8';

ADDR PID SPID
--
82053EC8 13 5410

You can then enable the level 4 trace from a DBA group user using the
commands:

Sqlplus /nolog
CONNECT / as sysdba
ORADEBUG SETOSPID <SPID from the above query>
ORADEBUG EVENT 10046 TRACE NAME CONTEXT FOREVER, LEVEL 4

This should now trace at level 4 everything the Discoverer user does.

Once you have completed gathering the information you need you turn off
the SQL trace for the session like so:

ORADEBUG EVENT 10046 TRACE NAME CONTEXT OFF

An example of a trace session using oradebug is in Figure 12.

$ ORACLE_SID=owbdw; export ORACLE_SID;
$ sqlplus /nolog
SQL*Plus: Release 9.0.1.0.0 - Production on Sun Sep 22 13:57:23 2002
© Copyright 2001 Oracle Corporation. All rights reserved.

SQL> connect / as sysdba
Connected.
SQL> ORADEBUG SETOSPID 5408
Oracle pid: 9, Unix process pid: 5408, image: oracle@misun08 (TNS V1-V3)
SQL> ORADEBUG EVENT 10046 TRACE NAME CONTEXT FOREVER, LEVEL 4
Statement processed.
SQL> ORADEBUG SETOSPID 5410
Oracle pid: 13, Unix process pid: 5410, image: oracle@misun08 (TNS V1-V3)
SQL> ORADEBUG EVENT 10046 TRACE NAME CONTEXT FOREVER, LEVEL 4
Statement processed.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 15

---DO PROCESSING ON MONITORED PIDS---

SQL> ORADEBUG EVENT 10046 TRACE NAME CONTEXT OFF
Statement processed.

As we have seen, another capability of the oradebug program is the ability
enable/disable setting the SQL tracing for another user's session. To
enable tracing for another session, the Oracle process identifier (PID) or
the Operating System processes identifier (SPID) must be identified from
v$process. This is an effective way of capturing a SQL trace from a
process that is already running. The output can be used to analyze SQL
related performance issues.

The ORADEBUG dump produces a trace file in the user_dump_dest that
can be formatted with TKPROF. Do the following:

1. Obtain the Oracle process identifier or the Operating System process

identifier (SPID) from v$process:

 SVRMGR> select pid, spid, username from v$process;

 PID SPID USERNAME
 ---- ----- --------
 8 25807 oracle

2. Attach to the process using ORADEBUG.

Using the Oracle process identifier:

 SVRMGR> oradebug setorapid 8

 Unix process pid: 25807, image: oracleV804

 - or -

 Using the Operating System process identifier:

 SVRMGR> oradebug setospid 25807

 Oracle pid: 8, Unix process pid: 25807, image: oracleV804

3. Turn on SQL Trace for the session.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 16

SVRMGR> oradebug event 10046 trace name context forever, level 12

 Statement processed.

4. Turn off the SQL trace for the session.

 SVRMGR> oradebug event 10046 trace name context off

5. Format trace file using TKPROF.

How to Find the Right PID for oradebug
setospid

There are ways to find the correct os pid from the Oracle database, by
querying v$session and v$process, but this method gets the information
strictly from the os.

1. At the Unix prompt, type who am i. For example:

 [tiger5]/app/oracle/product/8.1.6> who am i

kfarmer pts/25 Apr 13 10:37 (rociblj-ppp-9.us.oracle.com)

Take note of the terminal, in this case pts/25.

2. Start SQL*Plus and connect as sys as sysdba.

 [tiger5]/app/oracle/product/9.0.1> sqlplus /nolog

SQL*Plus: Release 9.0.1.0.0 - Production on Sun Sep 22 13:57:23 2002
© Copyright 2001 Oracle Corporation. All rights reserved.

SQL> connect / as sysdba
Connected.

3. Issue this command from SQLPLUS /nolog connected as SYS:

 !ps -ef | grep svrmgrl

Your output will look something like this:

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 17

SVRMGR> !ps -ef | grep svrmgrl
kfarmer 3705 25983 0 15:27:52 pts/25 0:00 svrmgrl
kfarmer 2504 24262 0 14:43:57 pts/18 0:00 svrmgrl
kfarmer 3759 3757 0 15:29:52 pts/25 0:00 grep svrmgrl
jharwell 28026 27944 0 16:42:25 pts/17 0:00 svrmgrl

Look for the terminal that matches your terminal from the 'who am i'
command. Note the pid that goes with it, in this case 3705. There will
be another process connected with this terminal, too, but that is the
grep, not server manager.

4. Issue this command from SQLPLUS /nolog connected as SYS:

 !ps -ef | grep 3705

 Your output will look something like this:

 SVRMGR> !ps -ef | grep 3705

oracle 3706 3705 0 15:27:52 ? 0:00 oracleV816
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
kfarmer 3705 25983 0 15:27:52 pts/25 0:00 sqlplus
kfarmer 3856 3705 0 15:33:37 pts/25 0:00 [sh]
kfarmer 3859 3857 0 15:33:37 pts/25 0:00 grep 3705

5. Look for a process that has a parent process of 3705. There are 2 here.
One is 3706, a sqlnet connection, and 3856, a shell. In this case, I'm
searching for the sqlnet connection that is running sqlplus, process
3706. This is the pid I would use for my oradebug setospid command:

 oradebug setodpid 3706

Tracing Errors Using ORADEBUG
What about setting up to trace other errors? It is really quite simple, once
you set the SID you are monitoring as shown in previous examples, just
use the error code as the input to the event command in oradebug. For
example, to trace the occurance of ORA-00942 errors you would enter the
command:

ORADEBUG EVENT 942 TRACE NAME ERRORSTACK LEVEL 3

..which will only produce anything if this session hits an ORA-942 error.

The output from oradebug is a raw trace file. Some experienced DBAs can
read these trace files in their raw state, however, I find it much easier to

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 18

use another Oracle utility, tkprof, to format the output into human readable
output.

The 'raw' Trace File is the opposite of the tkprof'd version, in that it shows
you the exact sequence in which the various pieces of SQL were run.

Just bear in mind the following: before it is actually executed, any piece of
SQL is parsed into the SGA. It is allocated a CURSOR # at this point.
This CURSOR # will remain in memory, containing the same piece of
SQL code, until another piece of SQL needs to overwrite the memory, at
which point the CURSOR # becomes available for re-use as well.

Whenever a piece of SQL is actually executed, an EXEC line is written to
the Trace File. Highly simplified, you might see something like this in the
'raw' Trace File:

 PARSE #1
 SELECT 'x' FROM TABLE1;
 PARSE #2
 SELECT 'y' FROM TABLE2;
 EXEC #1
 EXEC #1
 EXEC #2
 PARSE #1
 UPDATE TABLE1 SET COLUMN1 = :b0;
 EXEC #1

Note that CURSOR #1 has now been over-written with a new SQL
statement, so any further EXEC statements for that cursor will relate to the
'new' SQL.

Once you have got the hang of this, using Level 4 Trace to extract 'BIND
VARIABLES' from the Trace File is straightforward. In the example
above, the ':b0' in the penultimate line is a bind variable, and if Level 4
Trace were switched on, there would be an extra set of lines before each
EXEC line which would say (in the example):

 BINDS #1

This would be followed by a list of bind variables (:b0, :b1 etc) with some
information about each. The last piece of information given against each
bind variable is the actual value passed to the SQL statement.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 19

There are two things to note about this:

1. There will probably be many occurrences of ':b0' type variables in a

Level 4 Trace that are not bind variables (for example, the target
column_names in a 'SELECT INTO..' statement. However, the only
values shown in the BINDS information will be for values in an
UPDATE or INSERT statement, or in a WHERE clause.

2. The numbers allocated in the BINDS section do not necessarily bear
any relation to the numbers in the PARSE, but rather will always start
from zero. That is to say, if the first variable in the WHERE clause is
':b36', it will still appear as ':b0' under BINDS for that cursor.

Using ORADEBUG to Find Semaphore and
Memory Segments

We talked about the oradebug utility and non-sid specific commands, in
our example we used IPC. What exactly can IPC be used for? You can
verify the shared memory segments and semaphores that are attached to
the running instances using IPC in oradebug. This is the way to locate
which set of semaphores or memory areas are attached to a particular
instance.

First, run the "ipcs -b" command to show the memory and semaphore
listings for the Unix box. An example output from the ipcs -b command on
an HPUX system is shown in Figure 13.

gpsp083:/dwqpkg/orasw > ipcs -b
IPC status from /dev/kmem as of Sun Sep 22 12:54:16 2002
T ID KEY MODE OWNER GROUP QBYTES
Message Queues:
q 0 0x3c1827b6 -Rrw--w--w- root root 16384
q 1 0x3e1827b6 --rw-r--r-- root root 264
T ID KEY MODE OWNER GROUP SEGSZ
Shared Memory:
m 7176 0x80bfe0c4 --rw-r----- oracle dba 1064779776
m 18953 0x94644538 --rw-r----- oracle dba 247726080
m 22026 0x00000000 --rw-r----- oracle dba 3221225472
m 14347 0x00000000 --rw-r----- oracle dba 3221225472
T ID KEY MODE OWNER GROUP NSEMS
Semaphores:
s 3304021 0x8d6f79a0 --ra-r----- oracle dba 2048

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 20

s 2384022 0x8d7059e0 --ra-r----- oracle dba 2048
s 5312023 0x0b148384 --ra-r----- oracle dba 159
s 184024 0xaaa24ea0 --ra-r----- oracle dba 154
gpsp083:/dwqpkg/orasw >

Figure 13: Example ipcs -b command output

As you can see, the output is not very user friendly, it doesn't give the
database sid information but only an internal id for semaphores or memory
segments.

To determine the actual instance that is connected to a set of semaphores
or memory areas, perform these steps for each instance that is up and
running(Note: the documents in Metalink state the SPID doesn't have to be
set, I found at least on SuSE Linux and Oracle9i 9.0.1 you had to set it.):

 >sqlplus /nolog

 SQL> connect sys as sysdba
 Password: xxxxxx

 Connected.

 SQL> oradebug setmypid
 Statement processed.
 SQL> oradebug ipc
 Information written to trace file.
 SQL> oradebug tracefile_name
 /var/oracle/OraHome2/admin/galinux1/udump/ora_19134.trc

This will show the shared memory segment and semaphore that each
instance has attached/in use.

An example output from the summary section of the oradebug ipc
command is shown in Figure 13.

 -------------- Shared memory --------------
 Seg Id Address Size
 22026 c1eaf000 3221225472
 Total: # of segments = 1, size = 3221225472
 -------------- Semaphores ----------------
 Total number of semaphores = 159
 Number of semaphores per set = 159
 Number of semaphore sets = 1
 Semaphore identifiers:
 5312023

Figure 13: Example output from oradebug IPC command.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 21

The Seg Id shows 22026 for the shared memory that is attached to the
RUNNING instance. If you were looking to remove a memory segment
from a crashed instance (for example from a broken pipe in Unix) you
would now know that this shared memory segment is not the one to
remove.

The Semaphore identifier shows 5312023 for the semaphore that is
attached to the RUNNING instance. Again, a broken pipe in Unix could
result in an instance crash where the memory and semaphore assignments
are left hanging, this would show that this semaphore set was not the one
to remove.

Once you have noted ALL of the identifiers for ALL of the instances
which are up and running, compare these id numbers to those in the "ipcs -
b" listing. The entry that does not have a running instance to match is the
orphaned entry.

The ipc command used to remove these entries is:

 ipcrm <option> <id#>

NOTE: The option differs for shared memory and semaphores.

 ipcrm -m <shm_id#> <== Use for the Shared Memory entry

 ipcrm -s <sem_id#> <== Use for the Semaphore entry

Finding Parallel SQL Processes Using
ORADEBUG

Set parallel_min_servers = 4 (or any other number you like) to prespawn a
number of slaves on instance startup, look them up in your process list by
issuing the command ps -ef | grep p00 on your HP Unix system and note
the process numbers, then fire up svrmgrl, connect internal and for each
process do:

SVRMGR> oradebug setospid <process id>
SVRMGR> oradebug unlimit
SVRMGR> oradebug event 10046 trace name context forever, level 4

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 22

Then do whatever you want to trace that uses the parallel query slaves and
the sql trace info will appear in files in background_dump_dest,

Tracking down ORA-04030 errors
If a process size keeps growing, then it may eventually fail with an ORA-
4030 "out of process memory when trying to allocate %s bytes" error if
the operating system is exhausted of memory, or the memory size hits
some operating system defined limit (such as maxdsiz on HP-UX).

To start diagnosing a problem with the process size, such as a suspected
memory leak, a heapdump of the offending process is required:

 $ sqlplus /nolog
 SQL> connect sys as sysdba
 Password: xxxxxxxxx
 Connected.

 SQL> oradebug setospid <pid>
 SQL> oradebug unlimit
 SQL> oradebug dump heapdump 5 <--this dumps PGA and UGA heaps

Using Oradebug to Debug Spinning
Processes

In the case of a Spin situation the session events may or may not be static
depending on where in the code the spinning is taking place. It would be
expected that the session would be utilizing resources heavily such as
CPU and memory.

For a Spin situation it is important to determine which area of the code the
session is spinning in. Some indication of this may be derived from the
event however it is usually necessary to produce an errorstack of the
process a few times for analysis by support:

 >sqlplus /nolog
 SQL> connect sys/sys as sysdba
 Password: xxxxxxx
 Connected.

 SQL> oradebug setospid <SPID>
 SQL> oradebug unlimit
 SQL> oradebug dump errorstack 3

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 23

Where the SPID is the operating system process identifier, you can get it
from v$process.

Note that more detailed information can be found by dumping systemstate
information for the instance:

ALTER SESSION SET EVENTS 'IMMEDIATE TRACE NAME SYSTEMSTATE LEVEL 10';

The systemstate tracefile will be created in your USER_DUMP_DEST
directory. Get the Process ID of the problem session from the
V$PROCESS:

 SELECT PID FROM V$PROCESS WHERE ADDR=
 (SELECT PADDR FROM V$SESSION
 WHERE SID=sid_of_problem_session);

The systemstate dump includes information for each process, search for
'PROCESS id' and look up the wait event by doing a search on 'waiting
for'.

Oracle 8 IDLM and ORADEBUG
It is possible to dump the IDLM using lkdebug in oradebug. After you
connect internal you can type 'oradebug lkdebug help' to see a list of
options. This is similar to lkdump and lkdbx in Oracle7 with the
following important exceptions.

1. Some lkdump commands take a database name parameter for eg.
lkdump -O 0x0 0x0 ST V733

The database name parameter is not now required as you will already be
connected to the database in question in svrmgrl when running:

 oradebug lkdebug -O 0x0 0x0 ST 2

The output does not go to the screen but rather to the user_dump_dest
location for your svrmgrl session. This means that the best tip for using
lkdebug is to tail the trace file in another window.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 24

How to determine the Events Set in a
System

One way to find events set is to use DBS_SYSTME. However, you will
find that the read_ev call used in dbms_system works only for event name
CONTEXT. An alternative approach is to invoke ORADEBUG dump
events N where N is:

1 for session
2 for process
4 for system

Use svrmgrl, or sqlplus with connect internal os sys as sysdba in your
version of Oracle.

$ sqlplus /nolog
SQL> connect / as sysdba
Connected
SQL> oradebug setmypid
Statement processed.
SQL> oradebug dump events 4
Statement processed.
SQL> oradebug tracefile_name
/var/oracle/OraHome2/admin/galinux1/udump/ora_19206.trc
SQL>!vi /var/oracle/OraHome2/admin/galinux1/udump/ora_19206.trc

The output will give a typical trace file header and then will list the
information on all events that have been set at the particular level in the
instance you asked for, in this case, system wide.

Using ORADEBUG to Release DDL locks
First, you must kill the sessions through alter system kill session, OEM or
some other Oracleprocess killer. Then make sure the server processes are
really dead (in the OS, I know how to do this on Unix, but can't help you
with NT other than to suggest getting the MKS toolkit from Microsoft
which has a monitor session to break threads into their component
processes.)

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

Eventually, PMON will wakeup and notice that it needs to clean up those
locks and then the resources will be freed. However, using oradebug, you

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 25

can wakeup PMON immediately. To do that, connect either svrmgrl or
sqlplus as internal (or as sys as sysdba in Oracle9i.) Then:

select pid from v$process p, v$bgprocess b
where b.paddr = p.addr
and name='PMON'

That tells you the Oracle pid of the PMON process. Then, just:

oradebug wakeup <pid>

The oradebug command requires connect internal or sys as sysdba.

Why this works:

What actually being held on a stored pacakage/procedure/function when a
user process is running it is a library cache pin. It remains in force till the
execution completes. If the running process is interupted (gets ORA-
1013), then the process will rollback any changes (this could take a very
long time) and then release the pin. During the rollback, the library cache
pin is being held. If you kill the session (alter system kill session), the
corresponding server process is not necessarily killed immediately. Until
it's actually gone, PMON won't start cleaning up. Time wise, this
alternative could leave things tied up as long as the previous scenario.

So, we come to our scenario: Alter system kill session, then kill server
process in the OS, (SIGKILL is effective), now, the process has stopped
executing, and PMON can start clean up immediately. It will free the
library cache pin immediately, and take care of rollback after that, so, your
stored object is freed. One other point: PMON wakes up every 3 seconds,
but, it only checks for dead processes every 20th wake up, or, every 60
seconds. I have demonstrated this by running truss on the PMON process.

So, if you alter system kill session, but you don't go after the server
process by killing via OS mechanism, if could take several minutes to
clean up, and then PMON would take an additional minute to wake up and
clean things up.

By doing alter system kill session, followed by zapping processes,
followed by PMON wakeup, you get nearly instant results.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 26

How to Trace Trigger Actions Using
Oradebug

Tracing trigger actions is easy to do in oradebug, you simply set the
10309 event using a level 1 trace.

$ sqlplus -s /nolog
SQL> connect / as sysdba
Connected.
SQL> oradebug event 10309 trace name context forever, level 1
Statement Porcessed.

Don't forget to turn it off using context off when you are done.

Checking on Temporary Segment Usage
with Oradebug

Temporary segments are created by sorts, hashes, temporary table usage
and DDL statements like "create table as select .." or "alter index ...
rebuild;".

When a temporary segment involves a DDL statement, the new object is
originally created as a TEMPORARY segment in the target tablespace and
is changed to the appropriate object type (table, index) when DDL action
is finished.

You can check whether such action is active using ORADEBUG in the
following manner:

1. connect internal or in Oracle9i sys as sysdba
2. SELECT owner FROM dba_segments WHERE

segment_name=<temporary_segment>;
3. SELECT pid FROM v$process WHERE username=<owner of

segment>;
4. oradebug setorapid <pid>
5. oradebug dump errorstack 3
6. This will generate trace files, which contain the "current sql

statement".
7. If this is a CTAS or alter index ... rebuild, then you will have to wait

for the DDL action to finish.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 27

If you do not find active processes for the segment owner, or none of them
has a DDL action, it is possible that someone started this DDL statement
and the session died for some reason. The process PMON will clean up
stray processes after a crashed session and call SMON to remove this
temporary segment. But temporary segments can be very large and
removing them can take a long time, in some cases days. The temporary
segment can also be removed by a database shutdown, or shutdown
immediate. You can also force SMON to remove it by:

 ALTER TABLESPACE <permanent tablespace> coalesce;

Alternatively see the section on waking up processes using ORADEBUG.

Suspending a process using Oradebug
Oradebug also allows you to suspend a process. First you need to identify
the shadow process that you want to suspend. Then set your debug session
to point to that process:

>sqlplus /nolog
SQL> connect sys as sysdba
Password: xxxxxxx

Connected.

SQL> oradebug setospid 21335
Oracle pid: 13, Unix process pid: 21335, image: oracleKLF

And then you can suspend its execution using suspend:

SQL> oradebug suspend
Statement processed.

This stops a process dead in its tracks, examining v$session_wait shows
that it is waiting on the debugger:

8 GTX2 INACTIVE debugger

Resuming A Process using Oradebug
To start a suspended process off again use the resume command:

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 28

SQLPLUS> oradebug resume
Statement processed.
SQLPLUS>

Looking at a Processes Statistics using
Oradebug

You can also examine process stats using the procstat command:

SQLPLUS> oradebug procstat

The output in the trace file area for udump gives various details:

Dump file /opt/oracle/oradata10/dumparea/KLF/udump/ora_21335.trc
Oracle7 Server Release 7.3.3.5.0 - Production Release
With the distributed, replication and parallel query options
PL/SQL Release 2.3.3.5.0 - Production
ORACLE_HOME = /opt/oracle/app/oracle/product/7.3.3
System name: DYNIX/ptx
Node name: fes4
Release: 4.0
Version: V4.4.2
Machine: i386
Instance name: KLF
Redo thread mounted by this instance: 1
Oracle process number: 13
Unix process pid: 21335, image: oracleKLF

Mon Aug 3 08:48:35 1998
*** SESSION ID:(8.2121) 1998.08.03.08.48.35.000
----- Dump of Process Statistics -----
User time used = 6
System time used = 27
Maximum resident set size = 1431
Page faults = 8
Page reclaims = 0
Zero-Fill Pages = 1393
Resident Set Size increases = 0
Resident Set Size decreases = 86
Swaps = 0
System calls = 0
Voluntary context switches = 0
Involuntary context switches = 0
Signals received = 0
Logical Reads = 0
Logical writes = 0
Disk Reads = 2960
Disk writes = 0
Bytes from Logical reads = 631
Bytes from Logical writes = 0
Dumping the process:

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 29

Looking at a Process Error Stack
You can also view a processes error stack using ORADEBUG.

SVRMGR> oradebug dump errorstack 1

Mon Aug 3 08:54:18 1998
ksedmp: internal or fatal error
Current SQL statement for this session:
select * from cust_applic
----- Call Stack Trace -----
calling call entry argument values in hex
location type point (? means dubious value)
-------------------- -------- -------------------- -----------------------

ksedmp+133 CALL ksedst 0
ksdxcb+908 CALLp 00000000 8045560 11 3 8045600
80455B0
ksdxsus+216 CALL ksdxcb 1
sspuser+174 CALLr 00000000 1
nsprecv+4892 CALLr 00000000 881DAE0 881FE02 881DAB8
0

Notice how the current sql statement is displayed. This is useful for
identifying what a hanging/long running program is doing. By suspending
the process and dumping it, you can see what it is doing.

oradebug dump errorstack 2

Using Oradebug to Dump the SGA
For a greater level of detail, you can also dump the sga (be careful for
large SGAs you may exceed the limits for your dump file, you may want
to use oradebug unlimit first):

SVRMGR> oradebug dumpsga

Finding Out What can be Dumped

If you aren't sure what you want to dump, you can get a list of things to
dump:

SVRMGR> oradebug dumplist

This gives the following list (the full list is found elsewhere):

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 30

LATCHES
PROCESSSTATE
SYSTEMSTATE
INSTANTIATIONSTATE
CROSSIC

Using Oradebug to Look at Latches
You can dump a plethora of things about a user processes. For example,
let's look at the latches for a specified process (you must have used
setmypid or setopid <pid>):

SQLPLUS> oradebug dump LATCHES 1
Statement processed.

*** SESSION ID:(7.1446) 1998.08.03.09.43.24.000
LATCH STATUS
============
 20000a48 latch wait list level=9 state=free
 20000ae0 process allocation level=0 state=free
 20000b3c session allocation level=5 state=free
 20000b98 session switching level=0 state=free

Using ORADEBUG to Look at Library Cache
States

Again, once the SPID is set, you can look at many session specific
statistics, now, let's look at library cache stats (remember that the actual
output is placed in a trace file in the udump location) :

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 31

SQLPLUS> oradebug dump LIBRARY_CACHE 1
Statement processed.

..
LIBRARY CACHE STATISTICS:
 gets hit ratio pins hit ratio reloads invalids namespace
---------- --------- ---------- --------- ---------- ---------- ---------
 51513 0.9595830 181042 0.9733432 700 1454 CRSR
 8425 0.8227893 15429 0.8210512 987 0 TABL/PRCD
 260 0.9730769 260 0.9730769 0 0 BODY
 307 0.8469055 333 0.7717718 4 0 TRGR
 609 0.0098522 642 0.0514019 6 0 INDX
 27 0.4444444 15 0.3333333 0 0 CLST
 0 0.0000000 0 0.0000000 0 0 OBJE
 0 0.0000000 0 0.0000000 0 0 PIPE
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 0 0.0000000 0 0.0000000 0 0 ?
 61141 0.9305376 197721 0.9580773 1697 1454 CUMULATIVE

Getting Parallel Server DML Locks Using
Oradebug

To get Parallel Server DML lock information you must be connected as a
DBA level user and then use the various lkdebug commands to dump
various information about the parallel DML locking data.

SQLPLUS> connect / as sysdba;
Connected.

SVRMGR> REM Dump Parallel Server DLM locks
SVRMGR> oradebug lkdebug -a convlock
SVRMGR> oradebug lkdebug -a convres
SVRMGR> oradebug lkdebug -r <resource handle> (i.e 0x8066d338 from convres
dump)

Dumping the Control File Contents Using
ORADEBUG

 The contents of the current controlfile can be dumped in text form to a
process trace file in the user_dump_dest directory using the CONTROLF
dump. The levels for this dump are as follows.

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 32

Dump Level Dump Contains:

1 -- only the file header
2 -- just the file header, the database info record, and checkpoint progress
records
3 -- all record types, but just the earliest and latest records for circular
reuse record types
4 -- as above, but includes the 4 most recent records for circular reuse
record types
5+ -- as above, but the number of circular reuse records included doubles
with each level

For example, the following syntax could be used to get a text dump on the
controlfile in the trace file of the current process showing all the
controlfile record types but only the oldest and most recent of the circular
reuse records.

 oradebug setmypid
 oradebug dump controlf 3

Of course, the session must be connected AS SYSDBA to use the
ORADEBUG facility. However, any session with the ALTER SESSION
priviledge can use the following event syntax to take the same dump.

 alter session set events 'immediate trace name controlf level 3';

If you would like to play around with this some more, the commands to
dump the controlfile and file headers to your process trace file are as
follows.

 oradebug setmypid
 oradebug dump controlf 10
 oradebug dump file_hdrs 10

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH USING THE ORADEBUG UTILITY

MONOGRAPH PAGE 33

COPYRIGHT © 2002 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

Summary
The ORADEBUG utility is a powerful and complex utility which allows
you to easily control the dumping and tracing of virtually any database
information relating processes. We have only touched the surface in this
paper. Whenever using ORADEBUG be sure to try the options on a test
environment before attempting them in a production situation.

	Using the Oracle oradebug Utility : Debugging Oracle Applications
	Cover

	Notice Notice
	Using the Oracle oradebug Utility : Publication Information
	Table Of Contents
	Introduction
	Invoking Oradebug
	Using Debug
	Monitoring the Current Session With the oradebug setmypid
	Using DUMP
	Commands not requiring SPID to be set
	Using Oradebug for System Hangs:
	Getting a PROCESSTATE DUMP
	Getting a ERRORSTACKS DUMP
	Using ORADEBUG to Trace A Sessions SQL
	How to Find the Right PID for oradebug setospid
	Tracing Errors Using ORADEBUG
	Using ORADEBUG to Find Semaphore and Memory Segments
	Finding Parallel SQL Processes Using ORADEBUG ORADEBUG
	Tracking down ORA-04030 errors errors
	Using Oradebug to Debug Spinning Processes
	Oracle 8 IDLM and ORADEBUG
	How to determine the Events Set in a System System
	Using ORADEBUG to Release DDL locks
	How to Trace Trigger Actions Using Oradebug Oradebug
	Checking on Temporary Segment Usage with Oradebug
	Suspending a process using Oradebug
	Resuming A Process using Oradebug Oradebug
	Looking at a Processes Statistics using Oradebug Oradebug
	Looking at a Process Error Stack Stack
	Using Oradebug to Dump the SGA
	Using Oradebug to Look at Latches
	Using ORADEBUG to Look at Library Cache States States
	Getting Parallel Server DML Locks Using Oradebug Oradebug
	Dumping the Control File Contents Using ORADEBUG ORADEBUG

	Summary
	Team DDU

